2015-Present

43. Wertz, A. E.; Marguet, S. C.; Turro, C.; Shafaat, H. S.; Targeted Modulation of Photocatalytic Hydrogen Evolution Activity by Nickel-Substituted Rubredoxin through Functionalized Ruthenium Phototriggers. Inorg. Chem. 2024, in press. DOI: 10.1021/acs.inorgchem.4c02881.

42. Tolbert, G. B.; Jayawardana, S. B.; Lee, Y.; Sun, J.; Qu, F.; Whitt, L. M.; Shafaat, H. S.; Wijeratne, G. B. Secondary Sphere Lewis Acid Activated Heme Superoxo Adducts Mimic Crucial Non-Covalent Interactions in IDO/ITO Heme Dioxygenases. Chem. Eur. J. 2024, e202402310. [Link]

41. Lewis, L. C.; Sanabria-Gracia, J. A.; Lee, Y.; Jenkins, A. J.; Shafaat, H. S. Electronic isomerism in a heterometallic nickel-iron-sulfur cluster models substrate binding and cyanide inhibition of carbon monoxide dehydrogenase. Chemical Science 2024, 15, 5916, 5928. *Pick of the week and cover art feature for Issue 16 Chemical Science [Link]

40. Hooper, R. X.; Wertz, A. E.; Shafaat, H. S.; Holland, P. L.; Evaluating Diane to N2 Interconversion at Iron-Sulfur Complexes. Chem Eur J. 2024, 30, 24, 1-13. [Link]

39. Wertz, A. E.; Teptarakulkarn, P.; Stein, R. E.; Moore, P. J.; Shafaat, H. S. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform. Biochemistry 2023, 62, 2622–2631. [Link]

38. Shafaat, H.S.; Manesis, A.C.; Yerbulekova, A. How to Build a Metalloenzyme: Lessons from a Protein-Based Model of Acetyl Coenzyme A Synthase. Accounts of Chemical Research2023, 56 (9), 984-993. [Link]

37. Grinter, R.; Kropp, A.; Venugopal, H.; Senger, M.; Badley, J.; Cabotaje, P. R.;Jia, R.; Duan, Z.; Huang, P.; Stripp, S. T.; Barlow, C.K.; Belousoff, M.; Shafaat, H.S.; Cook, G.M.; Schittenhelm, R.B.; Vincent, K.A.; Khalid, S.; Berggren, G.; Greening, C. Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 2023, 615, 541–547 [Link]

36. Tao, W.; Carter, S.; Treviño, R.E.; Shafaat, H.S.; Zhang, S. Reductive NO Coupling at Dicopper Center via a [Cu2(NO)2]2+ Diamond-Core Intermediate. J. Am . Chem. Soc., 2022, 144 (49), 22633– 22640. [Link]

35. Manesis, A.C.; Yerbulekova, A.; Shearer, J.; Shafaat, H.S. Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion. Proceedings of the National Academy of Sciences, U.S.A., 2022, 119 (30), e2123022119. [Link]

34. Kisgeropoulos, E.C.; Gan, Y.J.; Greer, S.M.; Hazel, J.M.; Shafaat, H.S. Pulsed multifrequency EPR spectroscopy reveals key branch points for one- vs. two-electron reactivity in Mn/Fe proteins. J. Am . Chem. Soc., 2022, 144 (27), 11991-12006. [Link]

33. Shafaat, H.S.; Hayton, T.W. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorg. Chem., 2022, 61 (16), 5965-5971. [Link]

32. Treviño, R. E.; Shafaat, H.S. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr. Opinion in Chemical Biology, 2022, 67, 102110. [Link]

31. Tao, W.; Yerbulekova, A.; Moore, C.; Shafaat, H.S.; Zhang, S. Controlling the direction of S- nitrosation vs. denitrosation: reversible cleavage and formation of S-N bond within a dicopper center. J. Am. Chem. Soc., 2022. [Link]

30. Wang, H.; Cleary, M. B.; Lewis, L. C.; Bacon, J. W.; Caravan, P.; Shafaat, H. S.; Gale, E. M. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew. Chem. Int. Ed., 2022. [Link]

29. Shafaat, H.S.; Yang, J.Y. Uniting Biological and Chemical Strategies for Selective CO2 Reduction. Nature Catalysis, 2021. [Link]

28. Lewis, L.C.; Shafaat, H.S. Reversible electron transfer and substrate binding support [NiFe3S4] ferredoxin as a protein-based model for [NiFe] carbon monoxide dehydrogenase. Inorg. Chem2021, 60 (18), 13869-13875. *Featured in Forum Issue on Small Molecule Activation Reactions. [Link]

27. Naughton, K. J.; Treviño, R. E.; Moore, P. J.; Wertz, A. E.; Dickson, J. A.; Shafaat, H. S. In Vivo Assembly of a Genetically Encoded Artificial Metalloenzyme for Hydrogen Production. ACS Synthetic Biology 2021, 10 (8) 2116-2120. [Link]

26. Gardner, E.J.; Marguet, S.C.; Cobb, C.R.; Pham, D.M.; Beringer, J.A.M.; Bertke, J.A.; Shafaat, H.S.; Warren, T.H. Uncovering Redox Non-Innocent H-Bonding in Cu(I)-Diazene Complexes. J. Am. Chem. Soc2021, 143 (39), 15960-15974. [Link]

25. Nichols, A. W.; Cook, E. N.; Gan, Y. J.; Miedaner, P. R.; Dressel, J. M.; Dickie, D. A.; Shafaat, H. S.; Machan, C. W. Pendent Relay Enhances H2O2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co–N2O2 Complexes. J. Am. Chem. Soc. 2021, 143 (33), 13065-13073. [Link]

24. Kisgeropoulos, E.C.; Manesis, A.C.; Shafaat, H.S. Ligand field inversion as a mechanism to gate bioorganometallic reactivity: Investigating a biochemical model of acetyl CoA synthase using spectroscopy and computation. J. Am. Chem. Soc. 2021, 143 (2), 849-867. [Link]

23. Shafaat, H.S. [NiFe] Hydrogenases: A Paradigm for Bioinorganic Hydrogen Conversion. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier 2021.  *Invited contribution. [Link]

22. Treviño, R.E.; Slater, J.W.; Shafaat, H.S. Robust carbon-based electrodes for hydrogen evolution through site-selective covalent attachment of an artificial metalloenzyme. ACS Applied Energy Materials 2020, 3 (11), 11099-11112. [Link]

21. Wang, H.; Wong, A.; Lewis, L.C.; Nemeth, G.; Jordan, V.C.; Bacon, J.; Caravan, P.; Shafaat, H.S.; Gale, E.M. Rational ligand design enables pH control over aqueous iron magnetostructural dynamics and relaxometric properties. Inorg. Chem. 202059 (23), 17712 – 17721. [Link]

20. Kisgeropoulos, E.C.; Griese, J.J.; Smith, Z.R.; Branca, R.M.M.; Schneider, C.R.; Högbom, M.; Shafaat, H.S. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. J. Am. Chem. Soc. 2020, 142 (11), 5338–5354. [Link]

19. Yu, Z.; Thompson, Z.; Behnke, S. L.; Fenk, K. D.; Huang, D.; Shafaat, H. S.; Cowan, J. A. Metalloglycosidase Mimics: Oxidative Cleavage of Saccharides Promoted by Multinuclear Copper Complexes under Physiological Conditions. Inorg. Chem. 202059, 11218–11222. [Link]

18. Dhakal, S.; Shafaat, H.S.; Balasubramaniam, V. M. Thermal and high-pressure treatment stability of egg-white avidin in aqueous solution. J. Food Proc. Eng. 202043, e13481. [Link]

17. McGarry, K. G.; Lalisse, R. F.; Moyer, R. A.; Johnson, K. M.; Tallan, A. M.; Winters, T. P.; Taris, J. E.; McElroy, C. A.; Lemmon, E. E.; Shafaat, H. S.; Fan, Y.; Deal, A.; Marguet, S.C.; Harvilchuck, J.A.; Hadad, C.M.; Wood, D.W. A Novel, Modified Human Butyrylcholinesterase Catalytically Degrades the Chemical Warfare Nerve Agent, Sarin. Toxicol Sci. 2020, 174 (1), 133–146. [Link]

16. Marguet, S.C.; Stevenson, M.J.; Shafaat, H.S. Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation. J. Phys. Chem. B. 2019, 123 (46), 9792-9800. [Link]

15. Schneider, C.R.; Lewis, L.C.; Shafaat, H.S. The good, the neutral, and the positive: buffer identity impacts CO2 reduction activity by nickel(II) cyclam. Dalton Trans. 2019, 48, 15810-15821. *Selected as Dalton Transactions HOT Article. [Link]

14. Slater, J.W.; Marguet, S.C.; Gray, M.E.; Monaco, H.A.; Sotomayor, M.; Shafaat, H.S. (2019) The Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catalysis 2019, 9 (10), 8928-8942. DOI: 10.1021/acscatal.9b01720. [Link]

13. Manesis, A.C.; Musselman, B.W.; Keegan, B.; Shearer, J.; Lehnert, N.; Shafaat, H.S. A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase. Inorg. Chem. 2019, 58 (14), 8969-8982. *Selected as ACS Editor’s Choice; *Selected for Front Cover Feature; *Selected for IC Virtual Issue on “Modern Spectroscopy in Inorganic Chemistry”[Link]

12. Behnke, S.L.; Manesis, A.C.; Shafaat, H.S. Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Trans. 2018, 47, 15206-15216. [Link]

11. Slater, J.W.; Marguet, S.C.; Monaco, H.A.; Shafaat, H.S. (2018) Going beyond Structure: Nickel- Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J. Am. Chem. Soc. 2018140 (32), 10250-10262. [Link]

10. Schneider, C.R.; Manesis, A.C.; Stevenson, M.J.; Shafaat, H.S. (2018) A Photoactive Semisynthetic Metalloenzyme Exhibits Complete Selectivity for CO2 Reduction in Water. Chem. Commun. 2018, 54, 4681 – 4684. [Link]

9. Maugeri, P.T.; Griese, J.J.; Branca, R.; Miller, E.K.; Smith, Z.R.; Eirich, J.; Högbom, M.; Shafaat, H.S. (2018) Driving protein conformational changes with light: Photoinduced structural rearrangement in a heterobimetallic oxidase. J. Am. Chem. Soc. 2018, 140 (4), 1471-1480. *Selected for 2019 JACS Young Investigator Virtual Issue. [Link]

8. Stevenson, M.J.; Marguet, S.C., Schneider, C.R.; Shafaat, H.S. (2017) Light-driven hydrogen evolution by nickel-substituted rubredoxin. ChemSusChem. 2017, 10 (22), 4424-4429. [Link]

7. Manesis, A. C.; O’Connor, M. J.; Schneider, C. R.; Shafaat, H. S. (2017) Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. J. Am. Chem. Soc. 2017139 (30), 10328-10338. [Link]

6. Miller, E. K.; Trivelas, N. E.; Maugeri, P. T.; Blaesi, E. J.; Shafaat, H. S. (2017) Time-Resolved Investigations of Heterobimetallic Cofactor Assembly in R2lox Reveal Distinct Mn/Fe Intermediates. Biochemistry 2017, 56 (26), 3369–3379 [Link]

5. Slater, J. W.; Marguet, S. C.; Cirino, S. L.; Maugeri, P. T.; Shafaat, H. S. (2017) Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. Inorg. Chem. 2017, 56 (7), 3926– 3938 *Selected as feature article in ACS Select Virtual Issue on Engineered Biomolecular Catalysts. [Link]

4. Schneider, C. R., Shafaat, H. S. (2016). An Internal Electron Reservoir Enhances Catalytic CO2 Reduction by a Semisynthetic Enzyme. Chem. Commun. 2016, 52, 9889–9892. [Link]

3. Behnke, S.L., Shafaat, H.S. Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison. Comments on Inorganic Chemistry 2016, 36 (3), 123-140. *Invited Review [Link]

2. Slater, J.W., Shafaat, H.S. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase. J. Phys. Chem. Lett. (2015), 6 (18), 3731-3736. [Link]

1. Manesis, A.C., Shafaat, H.S. (2015). Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase. Inorg. Chem. 2015, 54 (16), 7959-7967. [Link]